Convergence Analysis of Inexact Rayleigh Quotient Iteration
نویسنده
چکیده
We consider the computation of the smallest eigenvalue and associated eigenvector of a Hermitian positive definite pencil. Rayleigh quotient iteration (RQI) is known to converge cubically, and we first analyze how this convergence is affected when the arising linear systems are solved only approximately. We introduce a special measure of the relative error made in the solution of these systems and derive a sharp bound on the convergence factor of the eigenpair in a function of this quantity. This analysis holds independently of the way the linear systems are solved and applies to any type of error. For instance, it applies to rounding errors as well. We next consider the Jacobi–Davidson method. It acts as an inexact RQI method in which the use of iterative solvers is made easier because the arising linear systems involve a projected matrix that is better conditioned than the shifted matrix arising in classical RQI. We show that our general convergence result straightforwardly applies in this context and permits us to trace the convergence of the eigenpair in a function of the number of inner iterations performed at each step. On this basis, we also compare this method with some form of inexact inverse iteration, as recently analyzed by Neymeyr and Knyazev.
منابع مشابه
On Convergence of the Inexact Rayleigh Quotient Iteration with the Lanczos Method Used for Solving Linear Systems∗
For the Hermitian inexact Rayleigh quotient iteration (RQI), we consider the local convergence of the inexact RQI with the Lanczos method for the linear systems involved. Some attractive properties are derived for the residual, whose norm is ξk, of the linear system obtained by the Lanczos method at outer iteration k + 1. Based on them, we make a refined analysis and establish new local converg...
متن کاملLocal convergence analysis of several inexact Newton-type algorithms for general nonlinear eigenvalue problems
We study the local convergence of several inexact numerical algorithms closely related to Newton’s method for the solution of a simple eigenpair of the general nonlinear eigenvalue problem T (λ)v = 0. We investigate inverse iteration, Rayleigh quotient iteration, residual inverse iteration, and the single-vector Jacobi-Davidson method, analyzing the impact of the tolerances chosen for the appro...
متن کاملTuned preconditioners for inexact two-sided inverse and Rayleigh quotient iteration
Convergence results are provided for inexact two-sided inverse and Rayleigh quotient iteration, which extend the previously established results to the generalized eigenproblem, and inexact solves with a decreasing solve tolerance. Moreover, the simultaneous solution of the forward and adjoint problem arising in two-sided methods is considered and the successful tuning strategy for preconditione...
متن کاملOn Convergence of the Inexact Rayleigh Quotient Iteration without and with MINRES∗
For the Hermitian inexact Rayleigh quotient iteration (RQI), we present general convergence results, independent of iterative solvers for inner linear systems. We prove that the method converges quadratically at least under a new condition, called the uniform positiveness condition. This condition can be much weaker than the commonly used one that at outer iteration k, requires the relative res...
متن کاملRiemannian Newton Method for the Multivariate Eigenvalue Problem
The multivariate eigenvalue problem (MEP) which originally arises from the canonical correlation analysis is an important generalization of the classical eigenvalue problem. Recently, the MEP also finds applications in many other areas and continues to receive interest. However, the existing algorithms for the MEP are the generalization of the power iteration for the classical eigenvalue proble...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 24 شماره
صفحات -
تاریخ انتشار 2003